A Novel Videography Method for Generating Crack-Extension Resistance Curves in Small Bone Samples
نویسندگان
چکیده
Assessment of bone quality is an emerging solution for quantifying the effects of bone pathology or treatment. Perhaps one of the most important parameters characterising bone quality is the toughness behaviour of bone. Particularly, fracture toughness, is becoming a popular means for evaluating bone quality. The method is moving from a single value approach that models bone as a linear-elastic material (using the stress intensity factor, K) towards full crack extension resistance curves (R-curves) using a non-linear model (the strain energy release rate in J-R curves). However, for explanted human bone or small animal bones, there are difficulties in measuring crack-extension resistance curves due to size constraints at the millimetre and sub-millimetre scale. This research proposes a novel "whitening front tracking" method that uses videography to generate full fracture resistance curves in small bone samples where crack propagation cannot typically be observed. Here we present this method on sharp edge notched samples (<1 mm×1 mm×Length) prepared from four human femora tested in three-point bending. Each sample was loaded in a mechanical tester with the crack propagation recorded using videography and analysed using an algorithm to track the whitening (damage) zone. Using the "whitening front tracking" method, full R-curves and J-R curves could be generated for these samples. The curves for this antiplane longitudinal orientation were similar to those found in the literature, being between the published longitudinal and transverse orientations. The proposed technique shows the ability to generate full "crack" extension resistance curves by tracking the whitening front propagation to overcome the small size limitations and the single value approach.
منابع مشابه
Mixed-mode stress intensity factors for kink cracks with finite kink length loaded in tension and bending: application to dentin and enamel.
Fracture toughness resistance curves describe a material's resistance against crack propagation. These curves are often used to characterize biomaterials like bone, nacre or dentin as these materials commonly exhibit a pronounced increase in fracture toughness with crack extension due to co-acting mechanisms such as crack bridging, crack deflection and microcracking. The knowledge of appropriat...
متن کاملExperimental Study of Sable Crack Growth in Thin Aluminium Sheet
Recent failure information from research teams in NASA Langley and others has shown that CTOA based fracture models calibrated on large C(T) and M(T) specimens can be transferred successfully to cracked aircraft fuselage structures for the assessment of their residual strength. A major difficulty that could limit the more extensive use of this failure parameter is its experimental measurement e...
متن کاملThe significance of crack-resistance curves to the mixed-mode fracture toughness of human cortical bone.
The majority of fracture mechanics studies on the toughness of bone have been performed under tensile loading. However, it has recently been shown that the toughness of human cortical bone in the transverse (breaking) orientation is actually much lower in shear (mode II) than in tension (mode I); a fact that is physiologically relevant as in vivo bone is invariably loaded multiaxially. Since bo...
متن کاملEffect of aging on the toughness of human cortical bone: evaluation by R-curves.
Age-related deterioration of the fracture properties of bone, coupled with increased life expectancy, is responsible for increasing incidence of bone fracture in the elderly, and hence, an understanding of how its fracture properties degrade with age is essential. The present study describes ex vivo fracture experiments to quantitatively assess the effect of aging on the fracture toughness prop...
متن کاملEffect of aging on the transverse toughness of human cortical bone: evaluation by R-curves.
The age-related deterioration in the quality (e.g., strength and fracture resistance) and quantity (e.g., bone-mineral density) of human bone, together with increased life expectancy, is responsible for increasing incidence of bone fracture in the elderly. The present study describes ex vivo fracture experiments to quantitatively assess the effect of aging on the fracture toughness properties o...
متن کامل